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Abstract- Because of its accuracy, signature matching is 
considered an important technique in anti-virus/worm 
applications.  Among some famous pattern matching algorithms, 
the Aho-Corasick (AC) algorithm can match multiple patterns 
simultaneously and guarantee deterministic performance under 
all circumstances and thus is widely adopted in various systems, 
especially when worst-case performance such as wire speed 
requirement is a design factor.  However, the AC algorithm was 
developed only for strings while virus/worm signatures could be 
specified by simple regular expressions.  In this paper, we 
generalize the AC algorithm to systematically construct a finite 
state pattern matching machine which can indicate the ending 
position in a finite input string for the first occurrence of 
virus/worm signatures that are specified by strings or simple 
regular expressions.  The regular expressions studied in this 
paper may contain the following operators: * (match any number 
of symbols), ? (match any symbol), and {min, max} (match 
minimum of min, maximum of max symbols), which are defined 
in ClamAV, a popular open source anti-virus/worm software 
module, for signature specification. 
 

I. Introduction 
Current virus/worm detection technologies can be classified 

into three categories, namely, protocol analysis, behavior 
anomaly, and pattern matching.  Protocol analysis is a 
technique which examines the header of a packet to ensure 
there is no misuse of protocol fields.  For example, the OID 
field of an SNMP packet should be a certain number of bytes.  
There is something wrong (say, an overflow attack) if the next 
expected field does not appear after this number of bytes.  
Behavior anomaly can be used to detect and prevent the 
outbreak of an attack because an infected host is likely to 
behave differently from a normal host.  As an example, a 
host infected by some virus/worm may try to infect other 
vulnerable hosts on the Internet with port/address scanning.  
Therefore, one can detect an infected host with the observation 
of high new connection attempt rate or high failure ratio of 
new connection attempts [5].  Behavior anomaly can be used 
to detect the so-called “zero-day” attacks.  However, it tends 
to create false positives if the normal behavior cannot be 
precisely specified.  Finally, pattern matching is a technique 
of looking for specific patterns in the payload of a packet or 
across packets.  One can utilize the strings of malicious codes 
contained in viruses/worms for detection.  Although it is 
limited to known viruses/worms with identified signatures, the 
pattern matching technique is quite valuable because of its 
accuracy.  Fortunately, the signature of a new virus/worm can 

often be quickly derived nowadays once it occurs. 
The purpose of this paper is to propose construction 

procedures of finite state machines for signature matching.  
There are some well-known pattern matching algorithms such 
as Knuth-Morris-Pratt (KMP) [2], Boyer-Moore (BM) [3], and 
Aho-Corasick (AC) [4].  The KMP and BM algorithms are 
efficient for single pattern matching but are not scalable for 
multiple patterns.  The AC algorithm pre-processes the 
patterns and builds a finite automaton which can match 
multiple patterns simultaneously.  Another advantage of the 
AC algorithm is that it guarantees deterministic performance 
under all circumstances.  As a consequence, the AC 
algorithm is widely adopted in various systems, especially 
when worst-case performance is an important design factor.  
Unfortunately, the AC algorithm was developed only for 
strings while virus/worm signatures could be specified by 
regular expressions.  It is well known that a regular 
expression is equivalent to a non-deterministic finite automata 
(NFA) which in turn is equivalent to a deterministic finite 
automata (DFA).  As a consequence, a straightforward 
approach to identify matches of a regular expression is to 
construct a DFA.  However, the number of states in a DFA 
grows exponentially with the length of the regular expression 
in the worst case.  In this paper, we present a different 
approach to construct a single DFA for multiple simple regular 
expressions. 

Our constructed finite state pattern matching machine can 
identify the ending position of the first occurrence of 
virus/worm signatures which could be specified by strings 
and/or regular expressions.  The regular expressions studied 
in this paper fully cover virus/worm signatures defined in 
ClamAV [1], an open source anti-virus software module. 

The problem definition is described in Section II.  In 
Section III, we present the construction procedure for a given 
set of strings together with one regular expression which 
contains only a single operator.  The construction procedure 
is then generalized in Section IV for multiple regular 
expressions with multiple instances of operators.  Finally, we 
draw conclusion in Section V. 
 

II. Problem Definition 
We address in this paper the problem of constructing a finite 

state pattern matching machine for a set of strings W together 
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with n simple regular expressions RE1, RE2, …, and REn.  
The regular expression definition includes the following 
operators: * (match any number of symbols), ? (match any 
symbol), and {min, max} (match minimum of min, maximum 
of max symbols).  We assume that every symbol is a byte.  
Moreover, in each REk, there is at least one *, ?, or {min, max} 
operator.  For simplicity, we call strings in W and RE1, 
RE2, …, and REn signatures and let W  = 
W ∪ RE1 ∪ RE2 ∪ … ∪ REn. 

Our goal is to construct a finite state pattern matching 
machine that can indicate the ending position in a finite input 
string x for the first occurrence of signature(s).  A pattern 
matching machine is said to be valid for W  if it can indicate 
the ending position of the first occurrence of signatures in W .  
Our construction procedure is a generalization of the AC 
algorithm [4].  Throughout this paper, functions g, f, and 
output represent, respectively, the goto function, the failure 
function, and the output function of a finite state pattern 
matching machine. 

We assume that a goto graph G for the set of strings W has 
been constructed with the AC algorithm.  Let R denote the 
start state of graph G.  If W is an empty set, then graph G 
contains only state R with g(R, a) = R for all symbols a. 

Some definitions are needed.  We say u is a prefix and v is 
a suffix of the string uv.  Moreover, u is a proper prefix if v is 
not empty.  Likewise, v is a proper suffix if u is not empty.  
String u is said to represent state P in a goto graph if the 
shortest path from the start state to state P spells out u.  The 
start state is represented by the empty string.  String u is said 
to represent state Q relative to state P if the shortest path in the 
goto graph from state P to state Q spells out u. 

Note that there might be a self-loop at the start state.  
However, it becomes a tree after removing the self-loop, if 
exists.  In the following definitions, we ignore the self-loop.  
We call state S the father of state P if there exists a symbol a 
such that g(S,a) = P.  State P is said to be a descendent of 
state S if there exists a non-empty string u which represents 
state P relative to state S.  The tree which consists of state S 
and all its descendent states is called the sub-tree of S.  A 
goto graph G is said to be “extended” with string u if G is 
augmented with u by the enter procedure (without the output 
function) of the AC algorithm.  We say a goto graph G is 
extended with string u from state P if G is augmented with u 
by the enter procedure (again, without the output function) 
using state P as the start state.   Extension of a goto graph 
with a string includes creation of new states (if necessary) and 
generation of the goto function.  We say a string u or a 
regular expression RE is “added” to the goto graph G if a valid 
pattern matching machine for W ∪ {u} or W ∪ RE is 
constructed by augmenting graph G.  Computation of the 
output function is not considered in this paper because it is the 
same as that in the AC algorithm.  For convenience, we call 
any state with non-empty output function a final state. 

Our constructed finite state pattern matching machine may 
consist of multiple separated goto graphs connected by failure 

functions.  Scanning of an input string is equivalent to 
traversal of the goto graphs. 
  

III. One Regular Expression with a Single Operator 
Let us start with the simplest case of adding one regular 

expression RE1 with only one *, ?, or {min, max} operator to 
the given goto graph G. 

III.A  * Operator 
It is clear that the * operator can be omitted for our 

application if it appears at the first or the last position of a 
regular expression.  Therefore, the simplest regular 
expression with a single * operator is s1*s2, where s1 and s2 are 
non-empty strings.  The following procedure is performed to 
construct a valid pattern matching machine for W  = 
W ∪ RE1. 
1. Duplicate the goto graph G and let NR denote the start 

state of the duplicated graph D. 
2. Extend G with string s1s2.  Let r denote the first symbol 

of s1.  Note that g(R, r) is changed if originally g(R, r) = 
R.  Denote by Q the state represented by s1.  Let the 
extended graph be denoted by G'. 

3. Extend the duplicated graph D with string s2 and let the 
resulting graph be denoted by D'.  Let r represent the 
first symbol of s2.  Note that g(NR, r) is changed if 
originally g(NR, r) = NR. 

4. Extend D' with s1s2.  The newly created states in this step 
are called virtual states.  Let the extended graph be 
denoted by D".  It is clear that G' is contained in D'', i.e., 
one can find a corresponding state S' in D" for every state 
S in G' so that the string representing S' (relative to NR) is 
the same as the string representing S (relative to R). 

5. Compute independently the failure functions for graphs G' 
and D".  If, for some state S' in D", f(S') = P' is a virtual 
state, then repeatedly apply P' ← f(P') until P' is not a 
virtual state and assign f(S') = P'. 

6. For every state Q' in G with representing string us1, 
modify f(S) for every state S in the sub-tree of Q' by 
assigning f(S) = f(S') where S' is the corresponding state in 
D" of S in G'.  Note that output(S) is updated as 
output(S) ∪ { 1RE } if the representing string of S is 

1 2us vs . 
7. Delete the virtual states, i.e., use graphs G' and D' for 

traversal. 
Example 1: Construct the pattern matching machine for W  
= W ∪ RE1 where W  = {abededabc, bedad, cedabc} and 
RE1 = ab*edab. 

The resulting goto graph G' for W' = W ∪ {abedab} is 
shown in Figure 1(a), where ~{a, b, c} means any symbol 
which is not a, b, or c.  All final states are shown with double 
circles.  According to step 6, state 8 in G' is a final state 
because f(8) = 26' which matches signature RE1.  Figure 1(b) 
illustrates the resulting goto graph D".  States 21' and 22' are 
virtual states.  Note that although state 19 is not a final state 
in G', its corresponding state 19' is a final state in  D'.  Since 
we are interested in finding the first occurrence of signature(s), 
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a goto graph can be pruned by deleting all the descendent 
states of a final state.  For example, state 20' in D" can be 
deleted without changing the match result.  After pruning, a 
state is a final state if and only if (iff) it is a leaf state, i.e., a 
state without any descendent state.  The failure functions for 
graphs G' and D" are presented in Figures 1(c) and 1(d), 
respectively.  According to step 3, we have g(0',e) = 23' 
although g(0,e) = 0. 
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(d) The failure function of graph D". 

Figure 1. The pattern matching machine for Example 1. 
 
For convenience, we call state P' with representing string us 

a companion state of state P with representing string s.  As a 
result, every state is a companion state of itself.  Moreover, if 
state Pk is a companion state of state P, then either Pk is P or 
there exist states P1, P2, …,Pk, such that  f(Pi) = Pi-1, 1 < i ≤  
k, and f(P1) = P.  In step 6, we modify the failure and output 
functions of every state S in the sub-tree of any companion 

state of Q.  After the modification, we have f(S) = P, the state 
in D' such that the string u representing P is a proper suffix of 
the string v representing S and, if string w representing any 
other state in D' is a proper suffix of v, then it is a proper suffix 
of u.  This skill will be used repeatedly in this paper.  For 
brevity, we say P is the longest proper suffix state of S in  D'.  
It is worth mentioning that state S in G' becomes a final state if 
its representing string is us1vs2 for some strings u and v. 

Traversal begins at the start state of graph G'.  It stays in 
graph D' once it is entered.  Moreover, graph D' is entered iff 
the failure function is consulted when a state in the sub-tree of 
a companion state of Q is visited.  We call state Q a 
“switching state".  The switching state is created because of 
the * operator.  Since graph D' can only be entered from 
states in the sub-tree of a companion state of Q, we know that 
s1 has already been matched if D' is entered.  In fact, the 
signature RE1= s1*s2 is matched iff a state in G' with 
representing string us1vs2  is visited or a state in D' with 
representing string us2  is visited.  Therefore, the 
constructed pattern matching machine  is valid. 

 
III.B  ? Operator 

Assume that RE1= s1?s2.  The procedure for adding s1?s2 to 
G is described below. 
1. Extend the goto graph G with s1.  Denote by Q the state 

represented by s1. 
2. Extend the resulting graph from state Q with as2 for all 

symbols a in Σ . 
3. Determine the failure function for the resulting graph. 
 

The basic idea of the above procedure is to extend the 
original goto graph G with s1as2 for all possible symbols a.  
In other words, the regular expression s1?s2 is expanded into 
strings s1as2 for all possible symbols a.  It is not hard to see 
that the pattern matching machine constructed with the above 
procedure is valid. 

 
III.C  {min, max} Operator 

Assume that RE1 = s1{min, max}s2.  A straightforward 
solution of adding RE1 to G is to add s1 ?k s2 to G for all k = 
min, …, max, where ?k denotes k repetitions of the ? operator.  
However, this solution is likely to create a huge number of 
new states if max is a large number.  A different approach 
which requires much fewer states is presented below. 

First graph G is extended with s1.  Let Q denote the state 
represented by s1 and G' the resulting graph.  Compute the 
failure function for G'.  Some information has to be stored in 
state Q to indicate that a {min, max} operator is encountered 
when Q is visited.  The information is basically a pointer to 
the starting location of the remaining part of RE1, i.e., {min, 
max}s2.  The same information is stored in all companion 
states of Q.  If a companion state of Q is visited, the traversal 
continues on graph G' and a second traversal is forked 
specifically to check if the remaining part of signature RE1 can 
be matched.  The goto graph T for the forked traversal is 

i  0 1 2 3 4 5 6 7 8 9 10 11
f(i)  -- 0 10′ 11′ 12′ 23′ 24′ 25′ 26′ 15' 0 0 
 

i  12 13 14 15 16 17 18 19 20 21 22  
f(i)  0 1 0 0 0 0 1 2 15 13' 2'  

i′  0′ 1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10' 11′
f(i′)  -- 0′ 10′ 11′ 12′ 23′ 24′ 25′ 26′ 15′ 0' 23′

 
i′  12′ 13′ 14′ 15′ 16′ 17′ 18′ 19′ 20′ 21′ 22' 23′

f(i′)  24′ 25′ 0′ 0′ 23′ 24′ 25′ 26′ 15′ 13′ 2' 0′
 

i′  24′ 25′ 26′          
f(i)  0′ 1′ 2′          
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built with {s2}.  A threshold th = max - min is kept and the 
next min input symbols are skipped for the forked traversal.  
Assume that s2 = a1a2…an.  As a result, graph T consists of 
n+1 states.  Number the states so that state 0 is the start state 
and state i is the state represented by a1…ai.  A counter ctr, 
with initial value 0, is maintained for the forked traversal.  
Update ctr = ctr + i – f(i) when the failure function is 
consulted in state i.  Also, ctr is increased by 1 if state 0 is 
the current state and input symbol a≠a1.  The scanning ends 
iff the original traversal finds a match (on graph G'), the 
forked traversal finds a match (on graph T), or the input string 
is exhausted.  An additional condition for the forked traversal 
to end is ctr > th, i.e., no match is found subject to the {min, 
max} constraint.  Note that the original traversal may 
generate multiple forked traversals because the companion 
states of Q could be visited multiple times.  An example of 
adding regular expressions with {min, max} operators to a 
goto graph G will be provided in the next section. 
 

IV.  Multiple Instances of Operators 
In this section, we consider the case of adding multiple 

regular expressions RE1, RE2, …, and REn to a goto graph G 
built with a set of strings W.  Since the ?  operator can be 
expanded or replaced by the {min, max} operator, we will 
focus on multiple instances of * and {min, max} operators. 
 

IV.A Regular Expressions with * Operators Only 
Assume that RE1, RE2, …, and REn contain only * operators.  

To begin with, let us consider a simple example with only two 
instances of * operators RE1 = s1*s2*s3.  For this case, the 
following procedure is performed to construct the pattern 
matching machine. 
1. Create two duplicated graphs of G, called D1 and D2, with 

start states NR1 and NR2, respectively. 
2. Extend G with s1s2s3, D1 with s2s3, and D2 with s3.  

Denote the resulting graphs by G', D '
1 , and D '

2 .  Let Q1, 
Q2 (in graph G'), and P (in graph D '

1 ) denote, respectively, 
the states represented by s1, s1s2, and s2 relative to NR1. 

3. Compute the failure functions independently for graphs G', 
D '

1 , and D '
2 . 

4. For every state S in the sub-tree of a companion state of 
Q2 or the sub-tree of a companion state of P, modify f(S) 
= P', the longest proper suffix state of S in D '

2 .  The 
output function output(S) is updated as output(S) ∪  
{ 1RE } if the representing string of S is 1 2 3us vs ws .  For 
every state S in the sub-tree of a companion state of Q1 
but not in the sub-tree of any companion state of Q2, 
modify f(S) = P', the longest proper suffix state of S in D '

1 .  
The output function output(S) is updated as 
output(S) ∪ { 1RE } if the representing string of S is 

2 3us vs . 
 

Note that there are two switching states Q1 and Q2 in G' and 
one switching state P in D '

1 .  We say these switching states 
are contributed by and belong to RE1.  Moreover, P is said to 

be a sibling switching state of Q2 since they are created by the 
same * operator. 

The basic idea of the above construction procedure is to 
distinguish three different conditions: both Condition 1 and 
Condition 2 are false (graph G'); Condition 1 is true and 
Condition 2 is false (graph D '

1 ); and both Condition 1 and 
Condition 2 are true (graph D '

2 ).  Here Condition 1 
represents the failure function is consulted in some state S 
which is in the sub-tree of a companion state of Q1 and 
Condition 2 means the same except that state S is in the 
sub-tree of a companion state of Q2 or the sub-tree of a 
companion state of P.  Let FQi (i = 1, 2) be the flag 
associated with switching state Qi.  We set FQi = 1 iff 
Condition i is true.  As a result, the three conditions 
correspond to (FQ1, FQ2) = (0, 0), (1, 0), and (1, 1).  We call 
any combination of (FQ1, FQ2) a configuration of the pattern 
matching machine.  It is clear that not all configurations are 
possibly to appear during traversal.  For example, 
configuration (0,1) never appears because FQ2 = 1 implies 
FQ1 = 1 since Q2 is in the sub-tree of Q1.  We say a 
configuration is feasible if it is possible to appear during 
traversal. 

According to the construction procedure, each graph is 
extended with some suffix of s1s2s3.  The original goto graph 
is extended with s1s2s3 and the output function of some states 
are modified so that it can be used to match strings in W' = 
W ∪ {s1s2s3} ∪ {u1s1u2s2u3s3 | at least one of u1, u2, and u3 is 
not empty and u1s1u2s2u3s3 is a prefix of some string in W}.  
Graph D1 is extended with s2s3 and the output function of 
some states are modified so that it can be used to match strings 
in W'' = W ∪ {s2s3} ∪ {us2vs3 | at least one of u and v is not 
empty string and us2vs3 is a prefix of some string in W}.  
Finally, graph D2 is extended with s3 and therefore can be used 
to match strings in W''' = W∪ {us3 | u is an empty string or us3 
is a prefix of some string in W}.  As a consequence, the 
constructed pattern matching machine is valid. 

The construction procedure can be generalized to the case 
with an arbitrary number of * operators.  Assume that there 
are m * operators in the set of n regular expressions RE1, 
RE2, …, and REn.  We call the string derived from REk by 
removing all the * operators SREk (string REk).  The original 
goto graph G is extended with SREk, 1 ≤ k ≤ n, and the 
resulting graph is called G'.  Let Q1, Q2, …, and Qm be the 
switching states in graph G'.  We say two switching states Qi 
and Qj are identical if u = v where u and v are the strings 
representing states Qi and Qj, respectively.  When this 
happens, Qi and Qj can be merged into one switching state.  
Assume that there are M (M ≤  m) distinct switching states, 
denoted by Q1, Q2, …, and QM, after merging identical ones.  
Note that a switching state may belong to multiple regular 
expressions because of the merging process.  Denote by FQi 
the flag associated with switching state Qi.  There are 
obviously 2M possible combinations of (FQ1, FQ2, …, FQM) 
and each combination represents a configuration.  A 
configuration is infeasible iff FQi = 0, FQj = 1 and Qj is in the 
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sub-tree of Qi.  If there are H feasible configurations 
(including the all-zero one), then the original goto graph G is 
duplicated H-1 times and each graph is extended with some 
suffix of SREk (1 ≤ k ≤ n) so that each resulting graph 
corresponds to a feasible configuration. 

We need to determine what suffix of SREk, 1 ≤ k ≤ n, is 
extended in D which corresponds to feasible configuration 
(FQ1, FQ2 …, FQM).  Graph D is extended with SREk if FQi 
= 0 for every Qi belonging to REk.  If there is at least one 
switching state belonging to REk with its associated flag set, 
then we need to find the switching state Ql belonging to REk 
which satisfies FQl = 1 and Ql is in the sub-tree of Qi for every 
switching state Qi belonging to REk with FQi = 1.  Once Ql is 
determined, graph D is extended with SRE '

k , where SRE '
k  is 

the proper suffix of SREk which satisfies SREk = uSRE '
k  and u 

is the string representing state Ql.  The resulting graph after 
extension is denoted by D'.  Note that there is a sibling 
switching state of Qi in graph D if FQi = 0 in the feasible 
configuration corresponding to graph D. 

The failure functions are first computed independently for 
all graphs.  Some modifications are necessary.  Consider 
state S in a specific graph D'.  If state S is in the sub-tree of a 
companion state of some switching state Q, we modify f(S) = 
P, the longest proper suffix state of S in the graph 
corresponding to the new feasible configuration.  The new 
feasible configuration has FQi = 1 if originally FQi = 1 or FQi 
= 0 and S is in the sub-tree of a companion state of Qi. 

Traversal begins at the start state of graph G'.  It switches 
to another goto graph corresponding to the new feasible 
configuration when failure occurs and the failure changes 
configuration.  The traversal ends iff a match is found or the 
input string is exhausted. 

 
IV.B  Regular Expressions with {min, max} Operators 

Assume that, in addition to * operators, there are {min, max} 
operators contained in RE1, RE2, …, and REn as well.  A 
regular expression which contains at least one {min, max} 
operator is fragmented by the {min, max} operators.  For 
example, regular expression RE = s1*s2*s3{min1, 
max1}s4*s5{min2, max2}s6 is fragmented into re1 = s1*s2*s3, re2 
= s4*s5, and re3 = s6.  As in previous sections, we assume that 
the goto graph G built with W is given.  To handle RE1, 
RE2, …, and REn, we collect all regular expressions without 
any {min, max} operator and the first fragment of every 
regular expression with at least one {min, max} operator.  
The collection of regular expressions and first fragments are 
added to graph G with the procedure presented in the last 
section.  Note that, unlike a regular expression, the first 
fragment re1 does not make the state in any graph represented 
by sre1 (string re1) or any proper suffix of sre1 a final state.  
Let G' denote the resulting graph. 

The remaining fragments of a regular expression with {min, 
max} operators can then be added to G' one by one.  
Consider the regular expression RE = s1*s2*s3{min1, 
max1}s4*s5{min2, max2}s6 as an example.  The first fragment 

re1 has been added to G to obtain G'.  Since re1 contains two 
* operations, it contributes in G' two switching states called Q1 
and Q2.  Some information is stored in the companion states 
of S represented by u1s1u2s2u3s3 to guide a forked traversal to 
the starting location of the second fragment re2.  Similarly, 
for any graph D1 which corresponds to a feasible configuration 
with FQ1 = FQ2 = 0, the same information is stored in all 
companion states of S represented by u1s1u2s2u3s3.  Consider 
a graph D2 with corresponding configuration satisfying FQ1 = 
1 and FQ2 = 0.  The same information is stored in the 
companion states of S represented by us2vs3.  Finally, for any 
graph D3 with corresponding configuration satisfying FQ1 = 
FQ2 = 1, the same information is stored in the companion 
states of S represented by us3.  To summarize, the 
information is stored in every state which finds a match of re1.  
In general, if the first fragment contains K * operators, i.e., re1 
= s1*s2*…*sK+1, then it will contribute K switching states in G', 
called Q1, Q2, …, and QK, such that Qi is in the sub-tree of Qi-1, 
1<i ≤ K.  Some information is stored in every state which 
finds a match of re1 to guide a forked traversal to the starting 
location of the second fragment. 

Now consider the processing of the second fragment re2.  
The construction procedure for re2 is simply to add re2 to the 
goto graph built with an empty string.  For our example, the 
result consists of a goto graph T1 build with {s4s5} which 
contains a switching state Q represented by s4 and another 
goto graph T2 built with {s5}.  Let P4 and P5 be the states 
represented by s4s5 and s5 relative to the start states of T1 and 
T2, respectively.  The failure functions for graphs T1 and T2 
are computed first independently and then modified for states 
in the sub-tree of P4.  Information is stored in states P4 and P5 
to guide another forked traversal to the starting location of the 
third fragment re3.  For convenience, we call states P4 and P5 
terminal states of the second fragment re2.  The maintained 
counter ctr1 is increased by one if the current state is the start 
state of graph T1 and it returns to the same state after an input 
symbol is processed.  Assume that the failure function is 
consulted in state S.  If S is not in the sub-tree of Q, then ctr1 
is updated as ctr1 = ctr1 + |u| - |v|, where u and v are the strings 
representing states S and f(S), respectively, and |z| denotes the 
length of string z.  If state S is in the sub-tree of Q, then ctr1 
is updated as ctr1 = ctr1 + |u| - |v| - |w|, where u, v, and w are 
the strings representing states S, Q, and f(S), respectively.  In 
this case, the traversal continues on graph T2 if the updated 
ctr1 is smaller than or equal to th1= max1 - min1.  In general, if 
the second fragment contains (K-1) * operators, i.e., re2 = 
s1*s2*…*sK, then K graphs, T1, T2, …, and TK, are required 
such that Ti is constructed with {sisi+1…sK}.  Note that there 
are K-i switching states, denoted by Q1, Q2, …, and QK-i, in 
graph Ti.  For the traversal on graph Ti, ctr1 is increased by 
one if the current state is the start state of Ti and it returns to 
the same state after an input symbol is processed.  If the 
failure function is consulted in state S which is not in the 
sub-tree of any switching state, then ctr1 is updated as ctr1 = 
ctr1 + |u| - |v|, where u and v are, respectively, the strings 
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representing states S and f(S), and the traversal continues on 
graph Ti if ctr1 ≤  th1.  If state S is in the sub-tree of Qj but 
not in the sub-tree of Qj+1, then ctr1 is updated as ctr1 = ctr1 + 
|u| - |v| - |w|, where u, v, and w are the strings representing 
states S, Qj, and f(S), respectively,.  In this case, the traversal 
continues on graph Ti+j if ctr1 ≤  th1.  Note that if the state 
represented by sisi+1…sK (a terminal state of re2) is visited, 
then a forked traversal is created.  The above construction 
procedure and traversal can be applied to any remaining 
fragment other than the last fragment. 

Let us consider the construction procedure for the last 
fragment.  In our example, since re3 is a string, we need only 
build a goto graph T3 with {s6}.  Let F denote the state 
represented by s6 relative to the start state of T3.  The failure 
function for graph T3 is computed independently.  The 
signature RE is matched iff state F is visited.  Again, if the 
last fragment contains (K-1) * operators, i.e., re3 = s1*s2*…*sK, 
then K graphs, T1, T2, …, and TK, are required such that Ti is 
constructed with {sisi+1…sK}.  State F in graph TK 
represented by sK is the only final state for RE. 
Example 2: Construct the pattern matching machine for W  
= W ∪ RE1 ∪ RE2, where W  = {abededbc, bedad, cedabc} 
and RE1 = ab*edab, RE2 = abe{3, 5}d*ca{2,6}bd. 
  Figure 2 shows the resulting goto graphs.  If x = 
cabebdabedaacafabde, then “abebdabedaacababd” is identified 
when the last “d” is processed.  Note that a forked traversal is 
created when the first “e” is processed and another forked 
traversal is created when the second “e” is processed.  The 
first forked traversal finds the match and the second forked 
traversal ends when “f” is processed. 

a

          c

    ~{a,b,c}

   FQ=0

b e d

e

e d

   b

e d b c

d a d

a b c

ba

Q

{3,5}

( ) Th h G'
(a) The goto graph G'. 

a

  
               c

  ~{a,b,c}
b a d

a b

d a
    

             b

c

c b

   d a

   d

FQ1=0
FQ2=1

 

(b) The goto graph D'. 

d    ~{d} c a
{3,5}

{2,6}

P

 

c    ~{c} a

{2,6}  

(c) The goto graph for the second fragment of RE2. 

b    ~{d} d
{2,6}

 
(d) The goto graph for the third fragment of RE2. 

Figure 2. The goto graphs for Example 2. 
 

V. Conclusion 
We have presented in this paper a systematic approach to 

construct the finite state pattern matching machine for a set of 
strings together with some simple regular expressions.  Like 
the Aho-Corasick algorithm, our proposed construction 
procedure yields a pattern matching machine dictated by three 
functions, namely, the goto, failure, and output functions.  
The difference is that our constructed pattern matching 
machine may consist of multiple separated goto graphs 
connected by failure functions.  Theoretically, there could be 
a large number of forked traversals for a regular expression 
which consists of multiple {min, max} operators.  In practice, 
there should not be a larger number of forked traversals for 
clean traffic, as long as the first fragment is sufficiently long.  
Therefore, in real applications, one can set a limit, say 8, on 
the number of concurrent forked traversals for each traffic 
flow.  Comparison of the performance of our proposed 
pattern matching machine with that of the ClamAV 
implementation will be reported in a future paper. 
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